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Abstract-The effect of slip velocity at a membrane surface is studied in detail for a tubular membrane 
system. A second-order perturbation solution of the equations of motion is found to be very satisfactory. 
The results are compared with those of the channel Row system reported earlier. As in the case of channel 
Row system, the effect of slip coefficient on concentration polarization is identical to that of P&let 
number-it augments diffusive transport of solute molecules from the membrane surface to the bulk 

solution. 

NOMENCLATURE 

Aj,Bj,Ej,Fj, coefficients in the matrix 
equation ; 

C, solute concentration ; 

co, inlet solute concentration ; 

C w1 solute concentration at membrane surface; 

c, co/( I - [), mixing-cup average solute 
concentration ; 

C, c/co ; 

CP c,/E- 1, concentration polarization ; 
(c,Mc,),, =o, normalized concentration 

D, 
k, 
P> 
Pe, 

r, 

rw 
Re, 

Re,, 

4 

uo, 
4 

polarization ; 
solute diffusivity; 
membrane permeability; 
pressure in the tube; 
I/cc,, P&let number; 
distance normal to phase boundary ; 
tube radius; 
2&,r,/v, Reynolds number ; 

2v,r&, wall Reynolds number ; 
velocity component in x-direction ; 
average velocity over the tube at tube inlet; 
average velocity over the tube at a given 
value of .Y ; 
ul& ; 
(u/U),, = 1, normalized slip velocity ; 
velocity component in r-direction ; 
velocity of fluid through membrane; 

VI&$ ; 
axial distance from tube entrance. 

Greek symbols 

2W,v,, normalized diffusion coefficient; 
surface characteristic of membrane ; 
2v,.u/UOrw = 2Re,.u/Rer,, fraction of water 
removed at a given value of .Y ; 
Wr,Y ; 
k”*/ar,, slip coefficient; 
kinematic viscosity; 
solution density; 
stream function. 

Superscripts 
. . 

I, II, III, IV, first, second, third and fourth-order 
derivatives. 

1. INTRODUCTION 

THE EFFECT of slip velocity at the membrane surface 
on concentration polarization has been studied in 
detail for a channel flow ultrafiltration system by 
Singh and Laurence [4]. In the present study, this 
work has been extended to a tubular flow system, 
since most of the commercially available ultra- 
filtration systems are tubular in structure. 

Brian [2] studied concentration polarization in 

tubular membranes, assuming fully-developed flow 
at the tube entrance, for a limited number of values 
of the normalized diffusion coefficient. In contrast to his 

channel flow study he obtained only an infinite-series 
solution. In this study, the diffusion equation is 
solved by a finite difference technique and the results 
compared with those of Brian, assuming slip velocity 
at the membrane surface. 

In order to solve the diffusion equation in the 

concentrated boundary layer, the velocity field must 
be specified. Sparrow et al. [S] studied, tube flows 
with surface mass transfer and slip velocity. They 
solved the equations of motion employing an 

indirect numerical method. Such a method has its 
obvious drawbacks. To circumvent these drawbacks, 
the equations of motion are solved by a second-order 
perturbation method and the two results compared. 
The results of the solutions are discussed in Section 4 
and the conclusions are presented in Section 5. 

As in the case of channel flow system, the effect of 
slip velocity on velocity profiles and concentration 
polarization has been studied. The ramifications of 
the slip velocity on predicting flux rates have also 
been examined. 

2. FORMULATION OF THE PROBLEM 

2.1. The equations qf’motion 

A macromolecular solution is considered to be 
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FIG. I. Tubular membrane. 

flowing in a tubular membrane ultrafilter, as shown 
in Fig. I. It is assumed that the fluid is incom- 
pressible and the operation is steady-state. The flow 
is assumed to be fully-developed at the tube 
entrance. Then, the equations of linear momentum 
and continuity in cylindrical co-ordinates are 

and 

The boundary conditions are 

au 0 5 ,=O = 

0, 

(3) 

(5) 

u(.u, 0) = 0, (6) 

v(.u, r,) = v,. (7) 

Equation (4) is the slip-flow boundary condition of 
Beavers and Joseph which has been discussed earlier 
[4]. According to this model, the slip velocity at the 
membrane surface is pro~rtional to the shear rate 
at the permeable boundary. When k = 0, equation 
(4) reduces to the no-slip condition appropriate to a 
solid wall. Equation (7) is the condition for constant 
permeation flux along the length of the tube. 

For a two-dimensional incompressible flow a 
stream function +(.Y, q) exists such that 

(8) 

(9) 

where 

(10) 

and the continuity equation (3) is satisfied. 
A suitable choice of stream function is 

$(s, ye) = + [r,C,-2c ,,,. \-]F(FT). (111 

Combining equations (S), (9) and (1 1) yields the 
following expressions for velocity components: 

All the unknowns are lumped together in F(q), a 
function yet to be determined. The velocity com- 
ponent 17, becomes a function of q only because of the 
assumption of constant permeation flux D,. Equa- 
tions (I) and (2) with the definitions of equations 
(12) and (13) can be used to yield the following 
result: 

q~iv +Z~iii + f$ fFiFii _ FFiii) = 0. (14) 

The new set of boundary conditions is obtained by 
substituting equations (12) and (I 3) in equations 
(4)-(7). Thus, 

F’( l )-+2QF”( 1) = 0, (15) 

~li2F”(~) --+ 0, as 4 -+ 0, 116) 

F(O) = 0, (17) 

F(1) = I, (18) 

where, 0 is the slip coefficient equal to k”‘/ar,. 
Equations (14)-( 18) are solved in Section 3.1. 

The assumptions used to solve the diffusion 
equation in the concentrated boundary layer are as 
follows: (1) uniform solute concentration over the 
tube cross-section at the inlet, (2) a developing 
concentration profile along the length of the tube, (3) 
steady-state operation, (4) convection of solute 
molecules in the axial and radial directions, (5) 
diffusive transport of solute in the axial and radial 
directions. It can be shown that diffusion in the axial 
direction is negligible [4]. On the basis of these 
assumptions, the appropriate diffusion equation (in 
dimensionless form) is 

ac ac a2c 
u;34-+ WI “2-a,)- = a1q2. 

ar all 
119) 

The boundary conditions are 

C(0, tl) = 1. 
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where 

U=“, “2, c=c, (q=E, 
UO VW c 0 wMt 

2 2v .Y 2Re s , [=--“‘-=A, 
Rer, 

(23) 
uorw 

Equation (22) is the steady-state, gel-polarization 

model [I]. Equations (19)-(22) are solved in Section 
3.2 using the velocity field obtained in Section 3.1. 

3. METHODS OF SOLUTION 

3.1. The perturbation solutior~ 
The fourth-order, nonlinear equation (14) was 

solved by Sparrow et al. [5] using an indirect 
numerical approach. The nature of the solution was 
thus lost. To circumvent this limitation, equation 

(14) is solved by a perturbation method. The 
solution of equation (14) for small values of Re, may 
be expressed in the form of a power series as 

F(V) = Fo(~)+F,(vy)Re, 

+F,(q)Rei+F,(q)Ri,+..., (24) 

where F,‘s are taken to be independent of Re,. 
Combining equations (14) and (24) and equating 

terms of like powers in Re, leads to the following set 
of equations where we let q = Fyi: 

zero-order: 

fo(rl) = 0, 

first-order: 

,j; trl) = FoF;i _ Fi Fiii 
0 01 

second-order: 

,f;(r]) = F,F~‘+FoF~‘-FIF~-FbF’;‘, 

The boundary conditions can be stated as 

Ft(l)+20Ft’(I) = 0, 

q”*F:(q) -* 0, as r) + 0, 

F,(O) = 0, 

F”(‘)=o’ forrr> I. 
F,(I) = 1, ’ 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

Equations (26)-(28) with (25) are solved to obtain a 
second-order perturbation solution to give 

F(q) = E(M~-~~2)+Re,Q(G~-H~2+P~3-~4) 

+Re:.T(H,q-G,q2+E,q3 

-D,q4+C1q5-Al$qr (33) 

where E, M, Q, G, H, P, T, H,, G,, E,, D,, C’, and A, 
are functions of 0 and are defined in the Appendix. 

The velocity profiles are obtained by substituting 
equation (33) in equations (12) and (13). Hence 

U = [I -[][E(M-2~) 

+Re,Q(G-2Hq+3Pq2-4ty3) 

+ReiT(H,-2G,q+3E,q2 

-40,~/~+5C,$-6A,$)], (34) 

V = E(M$‘* - q3’*) 

+Re,Q(Gv”’ -Hq3’*+ Pq5’*-q”*) 

+Re~,T(H,q1’2-Glq3’2+E,$‘2 

-D,~7’2+C1~9’2-AIq1”2). (35) 

The normalized axial velocity component u/U, is 

u = E(M-Zq)+Re,,Q(G-2Hu+3P2p-4q3) 
u 

+Re~,T(H,-2G,~+3E,~2-4D,~3 

+5C,r/4-6A,$), (36) 

where 

3.2. Thejuite difjherxe solutio,i 
The velocity field having been obtained, the 

diffusion equation (19) is solved by a finite difference 
scheme implicit in q. The details are outlined in the 
Appendix. 

4. RESULTS AND DISCUSSION 

4. I. Velocity profiles 
A second-order perturbation solution of the 

velocity field is obtained as given by equations 
(34)-(36). Typical velocity profiles are plotted for 
parametric values of the slip coefficient 0 equal to 0 
(no slip), 0.1 and 0.5 and the wall Reynolds number 
Re,,, equal to 2.0 in Fig. 2. It is seen that the 

0.6 - 

FIG. 2. Velocity profiles for Rr, = 2.0 for tube flow. 
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normalized slip velocity u, increases with H, as tr, 
increases with 0, the wall shear rate decreases and 
the profiles become flatter approaching those for 
plug tlow. As Re, increases, u, decreases and 
~ff~~)rnax increases. This behavior is the obverse in 
channel flow and can be attributed to difference in 
the two geometries. The effect of Be, and 0 on u, is 
also shown in Fig: 3. 

----- 1st order 

__ @Order 

8 

FIG. 2. First and second-order solutions of the effect of slip 
coefficient on normalized slip velocity for RE”, = 0. I. I .O, 2.0 

and 5.0. 

Sparrow er al. [IS] plotted a representative velocity 
profile with the value of Re, equal to 2.0. Their 
numerical solution is compared with our per- 
turbation solution in Fig. 2. The agreement is 
excellent lending support to the validity of the 

second-order perturbation solution. The first and 
second-order solutions are compared in Fig. 3 and in 
Table I. 

Table I. 

The values in column 3 of Table I are the difference 
in slip velocities between the first-order and second- 
order solutions. This difference increases with the 
value of Re,,.. Except for Re,,, equal to 5.0, the 
difference is satisfactorily small or negligible, suggest- 
ing the possibility of considering a higher-order 
solution for values of Rr, > 2.0. However, a value of 
Re,,, of 5.0 is large for permeation flux in ultra- 
filtration membranes and would not be expected to 
be encountered. A higher-order solution then will 
not be considered. 

Figures 4 and 5 show ptots of concentration 
polarization similar to those of the channel Row 
system. Figure 4 is the plot for the no slip case (0 
= 0) with the normalized diffusion coefficient, x1 
= 0.1, 0.2, 0.5, 1.0 and 2.0. Re,,. is taken to be equal 
to 0.2. The agreement between this plot and that of 
Brian [2] is very satisfactory except for 01% = 0.1, 
which indicates a higher value of concentration 
polarization c‘,. This is due to the effect of Re,,, 

which was ignored by Brian but is not negligibly 
small for ultrafiltration systems. Comparison with 

O.OOl 0.01 01 10 

FE. 4. Concentration polarization as a function of fraction of water removed (or longitudinal position) 5, 
for 6 = 0. 
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t- e-0.5 

FIG. 5. Concentration polarization as a function of fraction of wditer removed (or longitudinal position) i, 
for f3 = 0.5. 

Fig. 7 in the previous paper [4] shows that 
polarization is higher in tubular systems than in 
channel systems. This is so when the mean hydraulic 
radii are equal, that is, when the spacing of the flat 
membranes is one-half the diameter of the tubular 
membrane. However, when the spacing of the tlat 
membranes is equal to the diameter of the tubular 
membrane, polarization will be greater for the flat 
membranes [note c(, = D/o,(r,,./2), cq, = D/c,h]. For 
any value of xl, C, increases with the fraction of 

water removed <, and then levels out at an 

asymptotic value of C,. The asymptote corresponds 
to the far-downstream solution for the polarization, 
and it is approached at relatively low values of c 
when tlI is large. At low values of a,, the asymptotic 
polarization is approached only as < is unity. When 
the value of C, is substantially below the asymptotic 
value, the solution corresponds to the entrance 
region solution. The effect of slip is seen in Fig. 5. 
Comparing Figs. 4 and 5 it is seen that C, decreases 
with increase in 0, the decrease being more signi- 
ficant when ~~ is small. These figures show a slight 

upward shift in the curves when B = 0.5 as compared 
to the case when 0 = 0, since, as the value of c(, 
increases, the effect of f3 is less pronounced. This 
phenomena is also observed in Fig. 6 and is 
discussed below. 

In Fig. 6, (C,)O/(C,),,=, vs 6 are plotted for c(~ 
= 0.1, 0.2, 0.5, 1.0 and 2.0 when [ = 0.10 and 0.60. 
For any value of GL~, the normalized polarization is 
seen to decrease with increase in 8, and the decrease 
is more pronounced when c(, is small. Thus, the 
reduction in polarization is nearly 10 times when c(~ 
= 0.1 as compared to a I.7 times reduction when a1 
= 2.0 at 0 = 0.5 and [ = 0.60. It is seen that the effect 
of 0 on C, is similar to that of c(,. This phenomena, 
which has been discussed in detail by Singh and 
Laurence [4], shows that slip velocity enhances back 
diffusion of solutes from the membrane surface to the 
bulk solution, and thus reduces polarization. 

When [ = 0.10, that is, when IOY, of the water is 

removed, the normalized polarization has a lower 
value as compared to when [ = 0.60. When GL~ = 0.1 
and 0.2, however, the trend is reversed. This is 
because polarization for 0 = 0 is very large when c 

= 0.60 as compared to when c = 0.10, and tl, due to 
its low value has little influence on reducing 
polarization. 

5. CONCLUSIONS 

The second-order perturbation solution of the 
velocity profiles agrees very well with the indirect 
numerical solution of other workers especially for 
Re,, -c 2.0. The velocity profiles approach plug flow 

FIG. 6. Effect of slip coefficient on normalized con- 
centration polarization. 
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with increase in the slip coefficient. The slip velocity 

increases with the slip coefficient and is seen to 

approach asymptotic value, and decreases with an 

increase in the wall Reynolds number. The finite 

difference solution of the diffusion equation is in very 

good agreement with the infinite-series solution of 

Brian. The effect of the slip coefficient on con- 

centration polarization has been studied in detail. 

The polarization decreases with an increase in the 

slip coefficient. The effect is more significant for low 

values of the normalized diffusion coefficient indicat- 

ing that the slip velocity enhances back-diffusion of 

solutes. The overall effect is to reduce polarization 

and increase flux rates through the membrane. As in 

the case of channel how, the effect of the slip 

coefficient would be to decrease the magnitude of the 

pressure gradient due to the diminution in the shear 

stress at the membrane surface. 
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APPEI\;DIX 

(A) Consrants defined i,r equtrriou (33) 

E = I/(I +40), 

M = ‘(I +2(j). 

Q = l/72(1 +40)‘, 

G = 4(1 f60). 

H = Y(l +40). 

P=3M. 

T = B/16(600), 

B = 4QE, 

H, = G, - 1621 - IO 2500 ~ 144000’. 

G, = (2930 + 34 9200 + I35 6000 + 172 XOO(j3)E 

E, = 400(360’ + 300 + 5). 

D, = 50H, 

C, = 75(1+20), 

A, =4. 

(B) Thr>,fiuite di~fermw .so/urim 

The dilfusion equation (19). with the velocity field 
obtained from equations (34) and (35) is solved by a finite 
difference method implicit in ‘7. A grid is chosen with j = I 
at n = 0 and so on as shown below: 

‘j = 0, ‘7 = Arj. i, = ZAn, , ‘1 = I. 

j= I. .I = 2. j = 3 . . . . . j = NJ. 

From above it can he seen that at j = NJ. q = (NJ - l)Art. 
Similarly, at i = 0. rn = I and so on. Ai and An are 
increments in the v and I’ directions. 

The derivatives in equation (19) are replaced by finite 
difference analogues as shown below: 

i2c c ,+ I.“! -2c,.,+cj_, nl 

w ,,“’ (Aq)’ ’ 
@I) 

iC Cj+I,m-Cj-I.m 

9 
(‘I i.m I ’ 

iC _ CL”, - C,.,,,- 1 
_I 
’ i I.“, AC 

(B.2) 

(B.3) 

Substituting equations (B.1) (8.3) in equation (19) gives: 

AjCj-. i.,+B,Cj.,,, + E,Cj+ i.nl = ‘,Cj.“,m I = Fj, 
for 2<j<NJ-I. (B.4) 

where 

(B.6) 

(B.7) 

Using the Taylor series expansion around j = 1 andj = NJ, 
the boundary conditions, equations (21) and (22) can be 
written in finite difference form as: 

C I.,” = fC,.,,,-X3.,. (B.9) 

The initial condition, equation( 20) is replaced by 

C,,,,_ , = I. (B.l I) 

The above system of simultaneous equations can be 
represented by a tridiagonal coefhcient matrix and is solved 
most efficiently by the method of Thomas [3]. The solution 
procedure has been outlined earlier [4]. The convergence of 
the numerical solution was found to he satisfactory for grid 
size of 0.05 for r) and 0.001 for ;. 

INFLUENCE DE LA VITESSE DE GLISSEMENT, A LA 
SURFACE DUNE MEMBRANE, SUR L’ULTRA-FILTRATION 2. 

SYSTEME D’ECOULEMENT EN TUBE 

RCume~L’elTet de la vitesse de glissement sur la surface de la membrane est etudit en detail pour un 
systeme tuhulaire de membrane. Une solution de perturbation au second ordre est trouvte satisfaisante. 
Les resultats sont compares i ceux du canal report&s anterieurement. Comme dans le cas du systeme 
d’tcoulement en canal. I’effet du coefficient de glissement sur la polarisation de concentration est 
identique a celui du nombre de P&let: il augmente le transport par diffusion des molecules du solute. 

depuis la surface de la membrane jusqu’au coeur de la solution. 
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EINFLUSS DER SCHLUPFGESCHWINDIGKEIT AN EINER 
MEMBRANOBERFLACHE AUF DIE ULTRA-FILTRATIONSLEISTUNG 

II. SYSTEM MIT ROHRSTRdMUNG 

Zusammenfassung-Der EinfluB der Schlupfgeschwindigkeit an einer MembranoberflIche wurde 
ausfihrlich fiir ein System mit rohrfdrmiger Membran untersucht. Eine LGsung der Bewegung- 
sgleichungen mittels StGrgliedansatz zweiter Ordnung stellte sich als befriedigend heraus. Die Ergebnisse 
werden mit denjenigen ftir eine KanalstrGmung verglichen, iiber die friiher berichtet wurde. Wie im Fall 
der Kanalstramung ist der EinfluJ3 des Schfupfkoeffzienten auf die Konzentrationspolarisation identisch 
dem der Peciet-Zahi, er vergriiRert den Transport von gel&ten Molekiilen durch Diffusion von der 

Membrano~rfl~che in die L&sung. 

BJIMRHHE CKOPCKTII CKOJlblKEHHR HA IIOBEPXHOCTZl MEMfjPAHbI 
HA YJIbTPAQHJIbTPAIJHKl. 2. TE?IEHUE B TPYIiE 

A~wmwu-Ilpoeene~o nemnbme wneflommie wmwm cwopocw cxonbmcefiw na nosepxtmc~a 
B CHCTeMe Tpy69aTbIx MeMBpaH Ha ynbTpa+IJrbTpauioo. HaiQxeHo, YTO 603MyUeHHOe peureme 

ypaBHeHHfiABH;iteIiHn B~OpOrOnOp8JWa RBJIleTCIl BeCbHa yXOBJleTBOpHTeJlbHbfM. Pe3yJlbTiWblCpZiBHW 

BawrcII C B~~BONMH, nony~emibn4H anff Teqemm 8 ramme n npenblnylueii pa6crre. KaK H B cnyqae 

memi n KaHane,snmii~e xo9#ufuHeHra monbziemw Ha pacnpeneneHHe womteenrpaumi IL9eHTHqHo 
a.nmniHfo ~wcnanelure,T.e.npOHcxonHTycHnexHeLI~~y3~Otl~0r0nepeHOca bfonexysl ~~CTBO~~HHO~O 

BeIWCTBa OTnOBePXHOCTHMeM6fliWUB O6li% ~C~BOpiS. 


