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Abstract—The effect of slip velocity at a membrane surface is studied in detail for a tubular membrane

system. A second-order perturbation solution of the equations of motion is found to be very satisfactory.

The results are compared with those of the channel flow system reported earlier. As in the case of channel

flow system, the effect of slip coefficient on concentration polarization is identical to that of Péclet

number—it augments diffusive transport of solute molecules from the membrane surface to the bulk
solution.

NOMENCLATURE
A;,B,E, F;, coefficients in the matrix
equation;
c, solute concentration ;
Co» inlet solute concentration ;
Cros solute concentration at membrane surface;
c, ¢o/(1 —{), mixing-cup average solute
concentration ;
C, c/cos
C,, c¢,/c—1, concentration polarization;

(C,)8/(C )y =0, normalized concentration
polarization;

D, solute diffusivity;

k, membrane permeability ;

D, pressure in the tube;

Pe, 1/a;, Péclet number;

r, distance normal to phase boundary;

Fios tube radius;

Re,  2i,r,/v, Reynolds number;

Re,, 2v,r,/v, wall Reynolds number;

u, velocity component in x-direction ;

iy, average velocity over the tube at tube inlet;

i, average velocity over the tube at a given
value of x;

U, ufily;

U, (u/a), - ,, normalized slip velocity;

v, velocity component in r-direction ;

D, velocity of fluid through membrane ;

V, v/v,,;

X axial distance from tube entrance.

Greek symbols

o, 2D/rv,,, normalized diffusion coefficient ;

o, surface characteristic of membrane ;

g, 2v,,x/ior,, = 2Re, x/Rer,, fraction of water
removed at a given value of x;

n, (r/r.)?;

0, k'2/ar. . slip coefficient ;

v, kinematic viscosity ;

0, solution density;

v, stream function.
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Superscripts
i, i1, i, iv, first, second, third and fourth-order
derivatives.

1. INTRODUCTION

THE EFFECT of slip velocity at the membrane surface
on concentration polarization has been studied in
detail for a channel flow ultrafiltration system by
Singh and Laurence [4]. In the present study, this
work has been extended to a tubular flow system,
since most of the commercially available ultra-
filtration systems are tubular in structure.

Brian [2] studied concentration polarization in
tubular membranes, assuming fully-developed flow
at the tube entrance, for a limited number of values
of the normalized diffusion coefficient. In contrast to his
channel flow study he obtained only an infinite-series
solution. In this study, the diffusion equation is
solved by a finite difference technique and the results
compared with those of Brian, assuming slip velocity
at the membrane surface.

In order to solve the diffusion equation in the
concentrated boundary layer, the velocity field must
be specified. Sparrow et al. [5] studied tube flows
with surface mass transfer and slip velocity. They
solved the equations of motion employing an
indirect numerical method. Such a method has its
obvious drawbacks. To circumvent these drawbacks,
the equations of motion are solved by a second-order
perturbation method and the two results compared.
The results of the solutions are discussed in Section 4
and the conclusions are presented in Section 5.

As in the case of channel flow system, the effect of
slip velocity on velocity profiles and concentration
polarization has been studied. The ramifications of
the slip velocity on predicting flux rates have also
been examined.

2. FORMULATION OF THE PROBLEM

2.1. The equations of motion
A macromolecular solution is considered to be
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flowing in a tubular membrane ultrafilter, as shown
in Fig. 1. It is assumed that the fluid is incom-
pressible and the operation is steady-state. The flow
is assumed to be fully-developed at the tube
entrance. Then, the equations of linear momentum
and continuity in cylindrical co-ordinates are
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Equation (4) is the slip-flow boundary condition of
Beavers and Joseph which has been discussed earlier
[4]. According to this model, the slip velocity at the
membrane surface is proportional to the shear rate
at the permeable boundary. When k = 0, equation
{4) reduces to the no-slip condition appropriate to a
solid wall. Equation (7) is the condition for constant
permeation flux along the length of the tube.

For a two-dimensional incompressible flow a
stream function y(x, #) exists such that

2 oy

u(x’ 71) = E 5};: (8)
1 oy
v(x,n) = —rzrw 5;, 9

where
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’
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rw/
and the continuity equation (3) is satisfied.
A suitable choice of stream function is

r“’ —- .

Y, n)= > [rofig—20,X]F () (1

Combining equations (8), (9) and (11) vields the
following expressions for velocity components:

ulx, ) = [ao —“—iﬁ‘i}w(:ﬁ, (12)
0 F
vln) = L“”L,(f’ (13)

All the unknowns are lumped together in F(y), a
function yet to be determined. The velocity com-
ponent v, becomes a function of # only because of the
assumption of constant permeation flux v,. Equa-
tions (1) and (2) with the definitions of equations
(12) and (13) can be used to yield the following
result:

nF" 4+ 2F +% (FFi-FFy—0.  (14)
The new set of boundary conditions is obtained by
substituting equations (12) and (13) in equations
(4)-(7). Thus,

Fi(1)+20F (1) = 0, (15)

n'2Fi ) -0, asn-0, (16)
F(0}=0, (17}
F(l1)=1, (18)

where, 6 is the slip coefficient equal to k'//ar,.
Equations (14)~(18) are solved in Section 3.1.

2.2, The diffusion equation

The assumptions used to solve the diffusion
equation in the concentrated boundary layer are as
follows: (1) uniform solute concentration over the
tube cross-section at the inlet, (2) a developing
concentration profile along the length of the tube, (3)
steady-state operation, {4} convection of solute
molecules in the axial and radial directions, (5)
diffusive transport of solute in the axial and radial
directions. It can be shown that diffusion in the axial
direction is negligible [4]. On the basis of these
assumptions, the appropriate diffusion eguation (in
dimensionless form} is

ac 12 oc a*c
e —_ — T Ta . 19
U a + a])@n oy h o {19}
The boundary conditions are
Cio,m =1, (20)
27”2(?2)—»0, as -0, 2n
an
ec
C(C’ 1) = (X1<“"‘*) s (22)
a’? p=1
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where
u v 2D
U=s—, V=—, C=—, o= )
MO v, CO Dyl
2 b} - 2R .
r RETIR e,.x
n={—J), {=—"—=—". (23)
i uor,, Rer,,

Equation (22) is the steady-state, gel-polarization
model [1]. Equations (19)-(22) are solved in Section
3.2 using the velocity field obtained in Section 3.1.

3. METHODS OF SOLUTION

3.1. The perturbation solution

The fourth-order, nonlinear equation (14) was
solved by Sparrow et al. [5] using an indirect
numerical approach. The nature of the solution was
thus lost. To circumvent this limitation, equation
(14) is solved by a perturbation method. The
solution of equation (14) for small values of Re,, may
be expressed in the form of a power series as

F(n) = Fo(n)+F(nRe,
+F2(l1)Re,2v+F3(r])Ri,+...,
where F,’s are taken to be independent of Re,,.
Combining equations (14) and (24) and equating
terms of like powers in Re,, leads to the following set
of equations where we let g = Fi':

(24)

dq

Nan 29 = fi(n), (25)
zero-order:
fo(m) =0, (26)
first-order:
fi(n) = FoFg' = F4Fg', 27)
second-order:
faln) = F \F§'+ FoF{'~F{F5—FoFi.  (28)
The boundary conditions can be stated as
Fi(1)+26Fi(1) =0, (29)
n'"2Fl(1) >0, asn—0, (30)
F,0)=0, (31
iOE;; Z ? for n > 1. (32)

Equations (26)-(28) with (25) are solved to obtain a
second-order perturbation solution to give
F(n) = E(Mn—n*)+Re,Q(Gn—Hn*+Pn* —n*)
+ReZT(Hn—Gn*+En*
=Dyn*+Cin*=A,1°), (33)
where EEM,Q,G,H,P,T,H,,G,,E\,D,,C,and A,
are functions of 8 and are defined in the Appendix.
The velocity profiles are obtained by substituting
equation (33) in equations (12) and (13). Hence
U=[1-{[EM-2n)
+Re,,0(G—2Hn+3Pn*—4n*)
+Re:T(H, —2Gn+3E,y?
—4D P +5Cn* —64,1%)], (34)

V=EMn' )
+Re,Q(Gn'"? —Hy*2 + Py —n™'?)
+Re:ZTHn'"* =G n>* + En*?

=D+ Cyp®? =A%) (35)

The normalized axial velocity component u/i, is

¥ = E(M—2n)+Re,Q(G~2Hn +3P'n—4)
i
+Re2T(H,—2G,n+3En*—4Dn®
+5C1’74*6A1’15), (36)
where
2 py=1
J j u(n)dndé
i = = =1-¢ (37

0
2n =1

J f dndo
] n=0

3.2. The finite difference solution

The velocity field having been obtained, the
diffusion equation (19), is solved by a finite difference
scheme implicit in . The details are outlined in the
Appendix.

4. RESULTS AND DISCUSSION

4.1. Velocity profiles

A second-order perturbation solution of the
velocity field is obtained as given by equations
(34)-(36). Typical velocity profiles are plotted for
parametric values of the slip coefficient 8 equal to 0
(no slip), 0.1 and 0.5 and the wall Reynolds number
Re, equal to 2.0 in Fig. 2. It is seen that the
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FIG. 2. Velocity profiles for Re,, = 2.0 for tube flow.
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normalized slip velocity u, increases with 0, as u,
increases with 6, the wall shear rate decreases and
the profiles become flatter approaching those for
plug flow. As Re, increases, u, decreases and
(u/mymax increases. This behavior is the obverse in
channel flow and can be attributed to difference in
the two geometries. The effect of Re,, and 6 on u, is
also shown in Fig. 3.
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FiG. 3. First and second-order solutions of the effect of slip
coefficient on normalized slip velocity for Re,, = 0.1, 1.0, 2.0
and 5.0,

Sparrow er al. [5] plotted a representative velocity
profile with the value of Re, equal to 2.0. Their
numerical solution is compared with our per-
turbation solution in Fig. 2. The agreement is
excellent lending support to the validity of the
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second-order perturbation solution. The first and
second-order solutions are compared in Fig. 3 and m
Table I

Table 1.

O Re,, wi—y®
0.1 0.1 0

0.5 0

0.1 10 LIx107?
0.5 12x1073
0.1 20 46x1073
0.5 47 x107F
0.1 50 29x1072
0.5 30x 1072

The values in column 3 of Table | are the difference
in slip velocities between the first-order and second-
order solutions. This difference increases with the
value of Re,. Except for Re, equal to 50, the
difference is satisfactorily small or negligible, suggest-
ing the possibility of considering a higher-order
solution for values of Re,, > 2.0. However, a value of
Re, of 50 is large for permeation flux in ultra-
filtration membranes and would not be expected to
be encountered. A higher-order solution then will
not be considered.

4.2. Concentration polarization

Figures 4 and 5 show plots of concentration
polarization similar to those of the channel flow
system. Figure 4 is the plot for the no slip case (8
= 0} with the normalized diffusion coefficient, «,
=0.1, 0.2, 0.5, 1.0 and 2.0. Re,, is taken to be equal
to 0.2. The agreement between this plot and that of
Brian [2] is very satisfactory except for o, = 0.1,
which indicates a higher value of concentration
polarization C,. This is due to the effect of Re,
which was ignored by Brian but is not negligibly
small for ultrafiltration systems. Comparison with
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F1G. 4. Concentration polarization as a function of fraction of water removed (or longitudinal position) {,
forf =0
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FiG. 5. Concentration polarization as a function of fraction of water removed (or longitudinal position) ,
for 8 = 0.5.

Fig. 7 in the previous paper [4] shows that
polarization is higher in tubular systems than in
channel systems. This is so when the mean hydraulic
radii are equal, that is, when the spacing of the flat
membranes is one-half the diameter of the tubular
membrane. However, when the spacing of the flat
membranes is equal to the diameter of the tubular
membrane, polarization will be greater for the flat
membranes [note o, = D/v,(r,,/2), &g = D/t h]. For
any value of «,, C, increases with the fraction of
water removed {, and then levels out at an
asymptotic value of C,. The asymptote corresponds
to the far-downstream solution for the polarization,
and it is approached at relatively low values of {
when «; is large. At low values of «,, the asymptotic
polarization is approached only as { is unity. When
the value of C, is substantially below the asymptotic
value, the solution corresponds to the entrance
region solution. The effect of slip is seen in Fig. 5.
Comparing Figs. 4 and 5 it is seen that C, decreases
with increase in 0, the decrease being more signi-
ficant when o, is small. These figures show a slight
upward shift in the curves when 8 = 0.5 as compared
to the case when 6 =0, since, as the value of «,
increases, the effect of 0 is less pronounced. This
phenomena is also observed in Fig. 6 and is
discussed below.

In Fig. 6, (C,)0/(C,),=, vs 0 are plotted for «,
=0.1, 0.2, 0.5, 1.0 and 2.0 when { = 0.10 and 0.60.
For any value of o, the normalized polarization is
seen to decrease with increase in 6, and the decrease
is more pronounced when «, is small. Thus, the
reduction in polarization is nearly 10 times when o,
= 0.1 as compared to a 1.7 times reduction when a,
=20at 0 = 0.5and { = 0.60. It is seen that the effect
of § on C, is similar to that of a,. This phenomena,
which has been discussed in detail by Singh and
Laurence [4], shows that slip velocity enhances back
diffusion of solutes from the membrane surface to the
bulk solution, and thus reduces polarization.

When { = 0.10, that is, when 10%, of the water is

P

HM.T. 22/5—G

removed, the normalized polarization has a lower
value as compared to when { = 0.60. When o, = 0.1
and 0.2, however, the trend is reversed. This is
because polarization for 8 = 0 is very large when (
= 0.60 as compared to when { = 0.10, and «, due to
its low value has little influence on reducing
polarization.

5. CONCLUSIONS
The second-order perturbation solution of the
velocity profiles agrees very well with the indirect
numerical solution of other workers especially for
Re,, < 2.0. The velocity profiles approach plug flow
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FIG. 6. Effect of slip coefficient on normalized con-
centration polarization.
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with increase in the slip coefficient. The slip velocity
increases with the slip coefficient and is seen to
approach asymptotic value, and decreases with an
increase in the wall Reynolds number. The finite
difference solution of the diffusion equation is in very
good agreement with the infinite-series solution of

Brian. The effect of the slip coefficient on con-

centration polarization has been studied in detail.

The polarization decreases with an increase in the

slip coefficient. The effect is more significant for low

values of the normalized diffusion coefficient indicat-
ing that the slip velocity enhances back-diffusion of
solutes. The overall effect is to reduce polarization
and increase flux rates through the membrane. As in
the case of channel flow, the effect of the slip
coefficient would be to decrease the magnitude of the
pressure gradient due to the diminution in the shear
stress at the membrane surface.
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APPENDIX
(A) Constants defined in equation (33)

E = 1/(1 +40),
M =2(1+20),
0 = 1/72(1 +40)*,
G = 4(1 +60),

= 9(1 +40).
P =3M,
T = B/16(600),
B = 4QE,

H, =G, —1621—10 3500 — 144000,
G, = (2930 + 349200+ 13560002 + 172 8000*)E.
E,; = 400(3602 + 300+ 5),

D, = 50H,
C, = 75(1+20),
A, =4
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(B) The finite difference solution

The diffusion equation (19), with the velocity field
obtained from equations (34) and (35) is solved by a finite
difference method implicit in 5. A grid is chosen with j = |
at n = 0 and so on as shown below:

n=0 n=Ap n=2An...n=1
=1 j= j=3...,j=NJ
From above it can be seen that at j = NJ. n = (NJ —1)Any.
Similarly, at (=0, m=1 and so on. A{ and Ay are

increments in the x and v directions.

The derivatives in equation (19) are replaced by finite
difference analogues as shown below:

SARES 20+ Gy
{ﬂ - - itlm - jr; J_ (B.1)
N im (A'?)
=G, (B.2)
N jm 2(An)
iC Cim=Cjom
L =T Timt (B.3)
(&S jum Ag

Substituting equations (B.1)-(B.3} in equation (19) gives:

AICJ 1m+B]C1'"+ECJ+lm erm 1 _F_,s
for 2<j< NJ—1. (B4)
where
_ Vi’]l 24_1 %
A= ——r L — O (B.5)
2(Am) (An)
L RETY/
= ol (B.6)
A7 (Ap)
Fpt'?—n Ay H
= (B.7)
2(An) (An)
e ( B.8
As (B.8)

Using the Taylor series expansion around j = 1 and j = NJ,
the boundary conditions, equations (21) and (22), can be
written in finite difference form as:

Cl.m = %CZ.m"%CS.m' (B.9)
Com= (M':?(An [4Cys-1m—Crs-am]- (B.10)

The initial condition, equation( 20) is replaced by
Cim-1 =1 (B.11)

The above system of simultaneous equations can be
represented by a tridiagonal coefficient matrix and is solved
most efficiently by the method of Thomas [3]. The solution
procedure has been outlined earlier [4]. The convergence of
the numerical solution was found to be satisfactory for grid
size of 0.0S for n and 0.001 for {.

INFLUENCE DE LA VITESSE DE GLISSEMENT, A LA
SURFACE D'UNE MEMBRANE, SUR L’'ULTRA-FILTRATION -2
SYSTEME D’ECOULEMENT EN TUBE

Reésume —L’effet de la vitesse de glissement sur la surface de la membrane est étudié en détail pour un

systéme tubulaire de membrane. Une solution de perturbation au second ordre est trouvée satisfaisante.

Les résultats sont comparés a ceux du canal reportés antérieurement. Comme dans le cas du systéme

d’écoulement en canal, l'effet du coefficient de glissement sur la polarisation de concentration est

identique a celui du nombre de Péclet: il augmente le transport par diffusion des molécules du soluté
depuis la surface de la membrane jusqu’au coeur de la solution.
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EINFLUSS DER SCHLUPFGESCHWINDIGKEIT AN EINER
MEMBRANOBERFLACHE AUF DIE ULTRA-FILTRATIONSLEISTUNG
IL. SYSTEM MIT ROHRSTROMUNG

Zusammenfassung—Der EinfluB der Schlupfgeschwindigkeit an einer Membranoberfliche wurde

ausfithrlich fur ein System mit rohrformiger Membran untersucht. Eine Losung der Bewegung-

sgleichungen mittels Storgliedansatz zweiter Ordnung stellte sich als befriedigend heraus. Die Ergebnisse

werden mit denjenigen fur eine Kanalstrémung verglichen, tiber die frither berichtet wurde. Wie im Fall

der Kanalstromung ist der Einflul} des Schiupfkoeffizienten auf die Konzentrationspolarisation identisch

dem der Peclet—Zahl, er vergréBert den Transport von gelosten Molekiilen durch Diffusion von der
Membranoberfliche in die Losung.

BJIMAHUE CKOPOCTH CKOJIBXEHHSA HA NMOBEPXHOCTH MEMBPAHBI
HA VJIBTPA®WJIIBTPALIMIO. 2. TEUEHHE B TPVBE

Annoraums — TIpoBeneHo AeTalbHOE HCCNCACBAHHE BJIHAHMA CKOPOCTH CKOJIBXEHHS HA IOBEPXHOCTH

B cucTeme TpyGwaThIx MemGpan Ha ynbrpadmibTpausmio. HaifieHo, 4TO BO3MYINEHHOE pelUeHHe

YPaBHEHH JBIKEHHS BTOPOTO NOPAAKA ABJISETCA BECHMA YIOBJETBOPHTE/NbHLIM, Pe3ynbTaThl CpaBHH-

BAKOTCA C BLIBOJAMH, NONYYCHHHIMH JUIS TEYCHHA B KaHane B npeabuiymiedi paGore. Kak u B ciyyae

TEYEHHR B KaHasle, BAHAHME KODOHIHEHTA CKONBXCHAA Ha pacnpelelieHHe KOHUCHTPAINN HICHTHYHO

susHo wkena fexne, 1. . npoucxoauT ycunerue auddy3HOHHOTO NEPEHOCa MOJIEKY.! PACTBOPEHHOTO
BEIECTBA OT NOBEpXHOCTH MemOpaHbl B 00BEM pacTBopa.
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